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Abstract. We present a new explicit algorithm for linear elastodynamic problems with
material interfaces. The method discretizes the governing equations independently on
each material subdomain and then connects them by exchanging forces and masses across
the material interface. Variational flux recovery techniques provide the force and mass
approximations. The new algorithm has attractive computational properties. It allows
different discretizations on each material subdomain and enables partitioned solution of
the discretized equations. The method passes a linear patch test and recovers the solution
of a monolithic discretization of the governing equations when interface grids match.

1 INTRODUCTION

This paper focuses on the numerical solution of elastodynamic problems with inter-
faces. Such problems arise in multiple modeling and simulation contexts involving elastic
bodies with discontinuous material properties. We present a new explicit scheme for such
problems, which uses variational flux recovery techniques [2] to enable partitioned solution
of the interface problem. Restriction of the governing equations to material subdomain
yields boundary value problems linked through unknown interface traction. Approxima-
tion of the latter by variational recovery techniques decouples the subdomain problems.

The resulting algorithm has some attractive computational properties. It allows the use
of different discretizations on each material subdomain and enables partitioned solution of
the discretized equations. This makes it possible to also use the algorithm as a coupling
tool for different codes operating in different material regions. The method passes a
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linear patch test and recovers the solution of a monolithic discretization of the governing
equations when interface grids match.

To present the method it suffices to consider small displacements and linear elastic
models. Our main focus is on enabling explicit solution of the elastodynamic problem by
solving independent problems on each material subdomain. Thus, we restrict attention to
subdomain partitions with non-matching but spatially coincident interface grids. This is
in contrast to many of the existing works on elliptic problems with interfaces, which focus
primarily on capturing weak and strong discontinuities of the solution on unfitted grids.
Such methods often combine Nitsche’s method with extended finite elements [1, 3, 4], or
define a suitable modified or enriched basis set on cut elements [5, 6].

2 NOTATIONS

We consider a bounded region Ω ∈ Rd, d = 2, 3 with a material interface σ. The
interface splits Ω into non-overlapping subdomains Ω1 and Ω2 with Dirichlet boundaries
Γi = ∂Ωi/σ, i = 1, 2. We assume that the interface unit normal nσ coincides with the
outer unit normal to ∂Ω1. The Sobolev space for the displacements on Ωi is H(Ωi) and
HΓi

(Ωi) is its subspace of functions that vanish on Γi. Each subdomain is endowed with
a finite element partition Ωh

i . The set of all mesh vertices {xi,k} is V (Ωh
i ) and V (Ω̆h

i ) are
the interior mesh vertices. The subdomain partitions induce finite element partitions σh1
and σh2 of the interface σ, which are not required to match but are assumed to be spatially
coincident. The set V (σhi ) contains the vertices of the interface mesh σhi .
Shi is a conforming finite element subspace of H(Ωi), defined on the mesh Ωh

i and
equipped with a standard Lagrangian basis {Ni,k}. The interface part Shi,σ is the span
of all basis functions associated with V (σhi ) and Shi,0 is the space corresponding to the

interior vertices V (Ω̆h
i ). S

h
i,Γ is a conforming subspace of HΓi

(Ωi). The coefficient vector
of ui ∈ Shi is ~ui = (~ui,σ, ~ui,0) where ~ui,σ and ~ui,0 are the interface and interior coefficients
of ui, respectively, corresponding to functions ui,σ ∈ Shi,σ and ui,0 ∈ Shi,0, respectively.
The operator Π1 : Sh2,σ 7→ Sh1,σ interpolates u2,σ ∈ Sh2,σ in Sh1,σ, i.e.,

Π1(u2,σ) =
∑

i∈V (σh
1 )

u2,σ(x1,i)N1,i(x) =
∑

i∈V (σh
1 )

[ ∑
k∈V (K23x1,i)

(~u2,σ)kN2,k(x1,i)
]
N1,i(x) , (1)

where V (K2 3 x1,i) are the vertices of element K2 ∈ σh2 containing vertex x1,i from σh1 .
The coefficient vector of Π1(u2,σ) is given by P1~u2,σ where P1 is a |V (σh1 )|×|V (σh2 )| sparse
matrix. The row of this matrix corresponding to vertex x1,i contains the values N2,k(x1,i)
for k ∈ V (K2 3 x1,i). Similar representation holds for Π2 : Sh1,σ 7→ Sh2,σ.

3 Governing equations

We write the model elastodynamic problem as a pair of governing equations{
üi −∇ · σ(ui) = f in Ωi × [0, T ]

ui = g on Γi × [0, T ]
and

ui(0,x) = u0(x) in Ωi

u̇i(0,x) = u̇0(x) in Ωi

(2)
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for displacements ui(t,x), i = 1, 2 in Ωi, and a pair of interface conditions

u1(x, t) = u2(x, t) and σ1(x, t) · nσ = σ2(x, t) · nσ on σ × [0, T ] (3)

expressing continuity of the displacement and the traction across the interface. We restrict
attention to linear elastodynamic problems for which

σ(ui) = λi(∇ · ui)I + 2µiε(ui), ε(ui) =
1

2
(∇ui +∇uTi ),

and the Lame coefficients λi and µi are allowed to have a discontinuity along σ.

4 Formulation of the method

A formal splitting of (2)–(3) into two “independent” mixed boundary value subdomain
equations is the starting point in the formulation. This partitioning is formal because it
imposes the unknown traction value on the interface as a Neumann boundary condition
and resulting solutions satisfy a weak continuity relation in terms of an operator that
is not available in closed form. Using variational flux recovery ideas we eliminate the
unknown traction from the subdomain equations. In so doing we obtain two fully de-
coupled subdomain equations which implicitly incorporate appropriate discrete notions
of the interface conditions (3).

4.1 Formal partitioning of the governing equations

Let ui, i = 1, 2 denote the exact solutions of (2)–(3) and

γ = σ1(x, t) · nσ = σ2(x, t) · nσ

be the corresponding exact interface traction. If γ is known exactly then the displacement
ui on Ωi can be determined by solving the following mixed boundary value problem:

üi −∇ · σi = f in Ωi × [0, T ]

ui = g on Γi × [0, T ]

σi(x, t) · nσ = γ on σ × [0, T ]

and
ui(0,x) = u0(x) in Ωi

u̇i(0,x) = u̇0(x) in Ωi
(4)

The exact traction γ specifics a Neumann boundary condition on σ, which closes the
subdomain problems and makes it possible to solve them independently from each other.
By the uniqueness of the solutions to (2)–(3) and (4) it follows that the solutions of the
latter necessarily satisfy the first interface condition in (3), i.e., u1 = u2 on σ.

The weak form of the equations in (4) are: seek ui ∈ H(Ωi), i = 1, 2 such that

(ü1,v1)Ω1 + (σ1, ε(v1))Ω1 = (f ,v1)Ω1 + 〈γ,v1〉σ ∀v1 ∈ HΓ1(Ω1)

(ü2,v2)Ω2 + (σ2, ε(v2))Ω2 = (f ,v2)Ω2 − 〈γ,v2〉σ ∀v2 ∈ HΓ2(Ω2)
. (5)

Solutions of (5) necessarily satisfy the first interface condition in (3), i.e., u1 = u2 on σ.
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4.2 Spatial discretization

The finite element spatial discretization of (5) is to seek ui ∈ Shi × [0, T ], which satisfies
the initial and boundary conditions in (4) and is such that

(ü1,v1)Ω1 + (σ(u1), ε(v1))Ω1 = (f ,v1)Ω1 + 〈γ,v1〉σ ∀v1 ∈ Sh1,Γ
(ü2,v2)Ω2 + (σ(u1), ε(v2))Ω2 = (f ,v2)Ω2 − 〈γ,v2〉σ ∀v2 ∈ Sh2,Γ

(6)

Since in general σh1 and σh2 are non-matching finite element partitions of σ, solutions of
(6) can only satisfy a “weak” notion of displacement continuity

u1,σ = Π1(u)u2,σ and u2,σ = Π2(u)u1,σ (7)

where Π1(u) : Sh1 7→ Sh2 and Π2(u) : Sh2 7→ Sh1 are some unknown operators.

4.3 Elimination of the surface traction

The unknown interface traction γ and the weak continuity condition (7) couple the
discrete subdomain equations (6). This section explains the elimination of the surface
traction from the equations. We rewrite (6) in a block form corresponding to the par-
titioning of Shi into an interfacial part Shi,σ and a zero trace part Shi,0, along with the
appropriate weak continuity equation. This form is given by

(ü1,σ, N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 + 〈γ,N1,i〉σ ∀i ∈ V (σh1 )

(ü1,0, N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 ∀i ∈ V (Ω̆h
1)

u1,σ = Π1(u)u2,σ

(8)

on the first subdomain and by
(ü2,σ, N2,i)Ω2 + (σ(u2), ε(N2,i))Ω2 = (f , N2,i)Ω2 − 〈γ,N2,i〉σ ∀i ∈ V (σh2 )

(ü2,0, N2,i)Ω2 + (σ(u2), ε(N2,i))Ω2 = (f , N2,i)Ω2 ∀i ∈ V (Ω̆h
2)

u2,σ = Π2(u)u1,σ

(9)

on the second subdomain. We use (9) to eliminate the unknown traction γ from (8) and
vice versa. Solving the interface equations in (9) for γ yields

〈γ,N2,i〉σ = (f , N2,i)Ω2 − (σ(u2), ε(N2,i))Ω2 − (ü2,σ, N2,i)Ω2 ∀i ∈ V (σh2 ). (10)

Equation (10) defines a finite element approximation γ2(ü2,σ,u2) ∈ Sh2,σ of the interface
traction in terms of ü2,σ and u2. It can be interpreted as variational recovery [2] of γ from
a finite element solution. Then we approximate γ in (8) by the interpolant Π1γ2 ∈ Sh1,σ.
This yields the following system of equations on the first subdomain:

(ü1,σ, N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 + 〈Π1γ2(ü2,σ,u2), N1,i〉σ ∀i ∈ V (σh1 )

(ü1,0, N1,i)Ω1 + (σ(u1), ε(N1,i))Ω1 = (f , N1,i)Ω1 ∀i ∈ V (Ω̆h
1)

u1,σ = Π1(u)u2,σ

(11)
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Conversely, using (8) to eliminate γ from (9) we obtain an analogous equation on Ω2:
(ü2,σ, N2,i)Ω2 + (σ(u2), ε(N2,i))Ω2 = (f , N2,i)Ω2 − 〈Π2γ1(ü1,σ,u1), N2,i〉σ ∀i ∈ V (σh2 )

(ü2,0, N2,i)Ω2 + (σ(u2), ε(N2,i))Ω2 = (f , N2,i)Ω2 ∀i ∈ V (Ω̆h
2)

u2,σ = Π2(u)u1,σ

(12)

Let ~Fi = (~Fi,σ, ~Fi,0) be the vector with elements

~F k
i = (f , Ni,k)Ωi

− (σ(ui), ε(Ni,k))Ωi
∀k ∈ V (Ωh

i ) . (13)

Then, the interface equation in (11) can be written as

M1,σü1,σ = ~F1,σ +M1,σP1γ2(ü2,σ,u2) , (14)

whereas the matrix form of equation (10), which defines γ2, is given by

M2,σγ2 = ~F2,σ −M2,σü2,σ .

Solving the latter for γ2 yields

γ2(ü2,σ,u2) = M
−1

2,σ
~F2,σ −M

−1

2,σM2,σü2,σ .

The algebraic form of (11) follows by substituting this result into (14):
M1,σ ü1,σ +M1,σP1M

−1

2,σM2,σ ü2,σ = ~F1,σ +M1,σP1M
−1

2,σ
~F2,σ

M1,0ü1,0 = ~F1,0

u1,σ = P1(u)u2,σ

(15)

Proceeding along the same lines we obtain an analogous algebraic form for (11):
M2,σ ü2,σ +M2,σP2M

−1

1,σM1,σ ü1,σ = ~F2,σ +M2,σP2M
−1

1,σ
~F1,σ

M2,0ü2,0 = ~F2,0

u2,σ = P2(u)u1,σ

(16)

4.4 Elimination of displacement continuity equations

Equations (15)–(16) remain coupled through their dependence on interface states from
both subdomains. Under some additional assumptions on the matrix structure Pi(ui)
can be effectively approximated by the interface interpolant Pi in which case the weak
continuity equations in (15)–(16) are replaced by

u1,σ = P1u2,σ and u2,σ = P2u1,σ , (17)

5



Pavel Bochev and Paul Kuberry

respectively. The key factor that enables such an approximation is to work with diagonal
mass matrices. Thus, from now on we assume that (i) assembly is performed using node-
based quadrature rules, which result in

Mi,σ = diag(mk
i,σ) and M i,σ = diag(mk

i,σ); i = 1, 2 ,

and (ii) displacement continuity conditions are given by (17). For clarity we explain
elimination of interface states in a two-dimensional setting. In this case matrix forms
of interface transfer operators Πi assume a particularly simple form with at most two
non-zero elements per row. We explain the structure of P1. Let x1,i ∈ σh1 be an arbitrary
vertex on the interface of Ω1 and K2,ki ∈ σh2 be the element from the interface of Ω2, which
contains2 x1,i. Since σ is one-dimensional, element K2,ki is an interval with endpoints
x2,ki−1 and x2,ki , respectively. As a result, (1) reduces to the following sum∑

k∈V (K2,ki
)

~uk2,σN2,k(x1,i) = ~uki−1
2,σ N2,ki−1(x1,i) + ~uki2,σN2,ki(x1,i) (18)

Since basis functions form a partition of unity on every element, N2,ki−1(x1,i)+N2,ki(x1,i) =
1 and so, there exists 0 ≤ αi ≤ 1 such that N2,ki−1(x1,i) = α1,i and N2,ki(x1,i) = 1 − α1,i

It follows that the matrix P1 is given by

(P1)ij =


α1,i if j = ki − 1

1− α1,i if j = ki
0 otherwise

(19)

where K2,ki = [x2,ki−1,x2,ki ] is the element from the interface on Ω2 containing vertex x1,i

from the interface on Ω1. Repeating the same arguments for Π2 shows that

(P2)ij =


α2,i if j = ki − 1

1− α2,i if j = ki
0 otherwise

(20)

where K1,ki = [x1,ki−1,x1,ki ] is the element from the interface on Ω1 containing vertex x2,i

from the interface on Ω2 and α2,i = N1,ki−1(x2,i) and 1− α2,i = N1,ki(x2,i).
Since interior equations are fully decoupled from the interface equations we focus solely

on the structure of the latter. Their right hand sides are given by

(
~F1,σ +M1,σP1M

−1

2,σ
~F2,σ

)
j

= F j
1,σ +mj

1,σ

[
α1,j

F
kj−1
2,σ

m
kj−1
2,σ

+ (1− α1,j)
F
kj
2,σ

m
kj
2,σ

]
2If x1,i is also a vertex in σh2 , then it is shared by two elements in σ2

h. In this case we can take K2,ki

to be either one of these two elements.
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Figure 1: Assumption (23) holds provided (A1 + A2)/(A2 + A3) ≈ (E1 + E2)/(E2 + E3) and (B4 +
B5)/B5 ≈ (E4 + E5)/E5.

for the interface equation on Ω1 and(
~F2,σ +M2,σP2M

−1

1,σ
~F1,σ

)
j

= F j
2,σ +mj

2,σ

[
α2,j

F
kj−1
1,σ

m
kj−1
1,σ

+ (1− α2,j)
F
kj
1,σ

m
kj
1,σ

]
,

for the interface equation on Ω2.
Consider the terms involving displacements from the opposite sides of the interface,

that is, M1,σP1M
−1

2,σM2,σü2,σ in (15) and M2,σP2M
−1

1,σM1,σü1,σ in (16). We have that(
M1,σP1M

−1

2,σM2,σü2,σ

)
j

= mj
1,σ

[
α1,j

m
kj−1
2,σ

m
kj−1
2,σ

ü
kj−1
2,σ + (1− α1,j)

m
kj
2,σ

m
kj
2,σ

ü
kj
2,σ

]
(21)

and (
M2,σP2M

−1

1,σM1,σü1,σ

)
j

= mj
2,σ

[
α2,j

m
kj−1
1,σ

m
kj−1
1,σ

ü
kj−1
1,σ + (1− α2,j)

m
kj
1,σ

m
kj
1,σ

ü
kj
1,σ

]
. (22)

For shape-regular grids it is not unreasonable to expect that (see Fig.2)

m
kj−1
2,σ

m
kj−1
2,σ

≈
m
kj
2,σ

m
kj
2,σ

:= µj2,σ and
m
kj−1
1,σ

m
kj−1
1,σ

≈
m
kj
1,σ

m
kj
1,σ

:= µj1,σ . (23)

This allows us to exchange the order of interpolation and matrix multiplication in (21):(
M1,σP1M

−1

2,σM2,σü2,σ

)
j

= mj
1,σµ

j
2,σ

[
α1,jü

kj−1
2,σ + (1− α1,j)ü

kj
2,σ

]
= mj

1,σµ
j
2,σ(P1ü2,σ)j .

Likewise, exchanging the order of operators in (22) gives(
M2,σP2M

−1

1,σM1,σü1,σ

)
j

= mj
2,σµ

j
1,σ

[
α2,jü

kj−1
1,σ + (1− α2,j)ü

kj
1,σ

]
= mj

2,σµ
j
1,σ(P2ü1,σ)j .

From (17) it follows that üj1,σ = (P1ü2,σ)j and üj2,σ = (P2ü1,σ)j . Using these identities
we can eliminate ü2,σ from (21) and ü1,σ from (22) to obtain(

M1,σP1M
−1

2,σM2,σ

)
ü2,σ ≈

(
M1,σµ2,σ

)
ü1,σ
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and (
M2,σP2M

−1

1,σM1,σü1,σ

)
≈
(
M2,σµ1,σ

)
ü2,σ ,

respectively. This decouples (15)–(16) into an independent equation{ (
M1,σ +M1,σµ2,σ

)
ü1,σ = ~F1,σ +M1,σP1M

−1

2,σ
~F2,σ

M1,0 ü1,0 = ~F1,0

(24)

on Ω1, and another independent subdomain equation{ (
M2,σ +M2,σµ1,σ

)
ü2,σ = ~F2,σ +M2,σP2M

−1

1,σ
~F1,σ

M2,0ü2,0 = ~F2,0

(25)

on Ω2. The interface equations in each subdomain have the following component form:(
mj

1,σ +mj
1,σµ

j
2,σ

)
üj1,σ = F j

1,σ +mj
1,σ

[
α1,j

F
kj−1
2,σ

m
kj−1
2,σ

+ (1− α1,j)
F
kj
2,σ

m
kj
2,σ

]
; j ∈ V (σh1 ) (26)

and(
mj

2,σ +mj
2,σµ

j
1,σ

)
üj2,σ = F j

2,σ +mj
2,σ

[
α2,j

F
kj−1
1,σ

m
kj−1
1,σ

+ (1− α2,j)
F
kj
1,σ

m
kj
1,σ

]
; j ∈ V (σh2 ). (27)

Modification of subdomain mass matrices in (26)–(27) can be interpreted as their com-
pletion to bulk mass matrices on Sh1,σ ∪ Sh2,σ.

4.5 Fully discrete partitioned equations

We discretize (26)–(27) in time using second central difference

üi(t,x) ≈ ui(t+ ∆t,x)− 2ui(t,x) + ui(t−∆t,x)

∆t2
.

Let un+1
i ∈ Shi , uni ∈ Shi and un−1

i ∈ Shi denote finite element approximations of ui at
tn + ∆t, tn, and tn−1 = tn −∆t, respectively, D̈n+1(ui) = (un+1

i − 2uni + un−1
i )/∆t2, and

(~Fi)
n be the force vector (13) evaluated at uni . Then, for given uni and un−1

i , the fully
discrete partitioned formulation is to find un+1

1 such that{ (
M1,σ +M1,σµ2,σ

)
D̈n+1(u1,σ) = (~F1,σ)n +M1,σP1M

−1

2,σ(~F2,σ)n

M1,0D̈
n+1(u1,0) = (~F1,0)n

(28)

and un+1
2 such that{ (

M2,σ +M2,σµ1,σ

)
D̈n+1(u2,σ) = (~F2,σ)n +M2,σP2M

−1

1,σ(~F1,σ)n

M2,0D̈
n+1(u2,0) = (~F2,0)n

(29)

for the finite element approximations un+1
i , i = 1, 2 of the subdomain solutions at tn+1.
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5 Equivalence to a monolithic discretization on matching interface grids

If Ωh
1 and Ωh

2 are such that interface grids match then Ω1∪Ω2 is a conforming partition of
Ω and Sh = Sh1 ∪Sh2 is a conforming finite element subspace of H1(Ω). The corresponding
monolithic formulation of (2) is

MD̈n+1v = (~F )n .

where M and ~F are a diagonal mass matrix and force vector assembled using Sh. Par-
titioning of mesh nodes into interface and subdomain nodes induces partitioning of the
solution vector v into coefficient vectors vσ, v1,0 and v2,0 corresponding to interface and
interior subdomain nodes, respectively. As a result, we can write the monolithic problem
in the following block diagonal form:

MσD̈
n+1(vσ) = (~Fσ)n

M1,0D̈
n+1(v1,0) = (~F1,0)n

M2,0D̈
n+1(v2,0) = (~F2,0)n

(30)

Theorem 1 Assume that interface grids σh1 and σh2 are matching and interface displace-
ments at all previous time steps coincide:

(~u1,σ)ν = (~u2,σ)ν ν = 1, 2, . . . , n− 1, n . (31)

Then the partitioned solution (~u1,σ, ~u1,0)n+1, (~u2,σ, ~u2,0)n+1 coincides with the solution
~vn+1 = (~vσ, ~v1,0, ~v2,0)n+1 of the monolithic problem: ~vn+1

σ = ~un+1
1,σ = ~un+1

2,σ , ~u
n+1
1,0 = ~vn+1

1,0

and ~un+1
2,0 =, ~vn+1

2,0 .

Proof. For clarity we present the proof for the two-dimensional formulation (24)–(25) and
skip the time step index. Owing to the assumption that interface grids on Ω1 and Ω2

match, it follows that the area mass matrices M1,σ and M2,σ are identical, i.e., they have
the same dimension and with proper renumbering of their elements we can write

mj
1,σ = mj

2,σ ∀j ∈ V (σh1 ) ≡ V (σh2 )

For matching interface grids we also have that P1 = P1 = I. As a result, the interface
equations assume the form(

mj
1,σ +mj

2,σ

)
uj1,σ = F j

1,σ + F j
2,σ ∀j ∈ V (σh1 )

and (
mj

2,σ +mj
1,σ

)
uj2,σ = F j

2,σ + F j
1,σ ∀j ∈ V (σh2 ),

respectively. Thus, for matching interface grids (28)–(29) has the form{
(M1,σ +M2,σ)~u1,σ = ~F1,σ + ~F2,σ

M1,0~u1,0 = ~F1,0

;

{
(M2,σ +M1,σ)~u2,σ = ~F2,σ + ~F1,σ

M2,0~u2,0 = ~F2,0

. (32)
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Figure 2: Left: uniform partitions of Ω1 and Ω2 into triangles with a vertical interface at x = 0.6 cm.
Right: nonuniform partitions of Ω1 and Ω2 into triangles with an interface having a slope of tan(110◦)
and passing through (0.6,0.5).

It immediately follows that ~u1,0 = ~v1,0 and ~u2,0 = ~v2,0 . On the other hand, it is easy to
see that for matching interface partitions, the monolithic volume interface mass matrix
is sum of the volume interface mass matrices on Ω1 and Ω2, i.e., Mσ = M1,σ + M2,σ .
Furthermore, if (31) holds, a direct calculation shows that the monolithic interface force

vector is sum of the interface force vectors on Ω1 and Ω2: ~Fσ = ~F1,σ + ~F2,σ . Therefore,
~u1,σ and ~u2,σ solve an identical equation, which coincides with the monolithic interface
equation and so, ~u1,σ = ~u2,σ = ~vσ . �

6 Convergence rates

We use the manufactured solution

u =
(

sin(5πx) cos(3πy) log(1 + t); 4x4 cos(4πy)
√
t+ 2

)T
(33)

to estimate numerical convergence rates of the algorithm. We assume linear homogenous
isotropic solid with µ = 0.01, λ = 0.02 dyne/cm2 and density 1 g/cm3. Substitution of
(35) into the governing equations yields the problem data. The domain Ω = [0, 1]2 is
divided into two subdomains using a vertical and a slanted interface; see Fig. 3. Each
subdomain is meshed independently and the interface grids are non matching.

Error/Rate

Mesh 1 12× 20 24× 40 48× 80

Mesh 2 20× 20 40× 40 80× 80

‖u− uh
1‖0,Ω1

7.97e-03/- 2.06e-03/1.95 5.12e-04/2.01

‖u− uh
2‖0,Ω2 2.58e-02/- 6.42e-03/2.01 1.59e-03/2.01

‖u− uh
1‖1,Ω1 5.61e-01/- 2.59e-01/1.11 1.30e-01/1.00

‖u− uh
2‖1,Ω2

2.11e+00/- 1.06e+00/1.00 5.29e-01/1.00

Table 1: Errors and convergence rates using a vertical interface and uniform meshes at t = 0.25 s.
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Error/Rate

Mesh 1 14× 20 28× 40 56× 80 48× 80

Mesh 2 26× 20 52× 40 104× 80 48× 80

‖u− uh
1‖0,Ω1

8.19e-03/- 2.07e-03/1.98 5.16e-04/2.01 1.37e-04/1.92

‖u− uh
2‖0,Ω2

1.52e-02/- 3.79e-03/2.00 9.58e-04/1.99 2.48e-04/1.95

‖u− uh
1‖1,Ω1

5.64e-01/- 2.78e-01/1.02 1.39e-01/1.00 6.94e-02/1.00

‖u− uh
2‖1,Ω2 1.63e+00/- 8.22e-01/0.99 4.12e-01/1.00 2.06e-01/1.00

Table 2: Errors and convergence rates using a slanted interface and non uniform meshes at t = 0.25 s.

We observe in Tables 1 and 2 that by using a coincidental interface with nonmatching
vertices and temporal step sizes on the order of h, the rate of convergence is second order
regardless of the interface orientation.

6.1 Equivalence to a monolithic solution for matching interface grids

To confirm numerically Theorem ?? we use the same interface configurations as before,
but consider grids with matching interface nodes. In this case the union Ωh

1 ∪ Ω2
h defines

a conforming mesh partition of Ω. The difference in solutions, shown in Table 3, left, are

Interface Vertical Slanted

Mesh 1 24× 20 24× 20

Mesh 2 24× 20 24× 20

‖u1
h − uh‖0,Ω1

3.38e-17 9.43e-17

‖u2
h − uh‖0,Ω2 1.07e-15 1.05e-15

‖u1
h − uh‖1,Ω1 2.49e-15 7.74e-15

‖u2
h − uh‖1,Ω2

9.92e-14 1.23e-13

Interface Vertical Slanted

Mesh 1 6× 3 6× 3

Mesh 2 34× 11 34× 11

‖u− uh
1‖0,Ω1

3.45e-15 3.54e-15

‖u− uh
2‖0,Ω2 4.00e-15 4.11e-15

‖u− uh
1‖1,Ω1 1.16e-14 1.59e-14

‖u− uh
2‖1,Ω2

6.42e-14 7.85e-14

Table 3: Left: Comparison of the monolithic solution uh with subdomain solutions uh1 and uh2 . Right:
patch test errors at time t = 0.05 s

equivalent up to roundoff whether computed through the monolithic formulation or using
the algorithm based on variational flux recovery.

6.2 Preservation of linear displacements

The patch test [7] requires a method to recover a certain class of solutions. This section
verifies that our method is capable of reproducing linear displacement fields exactly. We
consider Ω = [−1, 1]2 with a vertical and a slanted interface and non matching interface
grids; see Fig.5. The exact solution is

u = (−5x+ 50y, 33x− 22y) (34)

We assume linear homogenous isotropic solid with µ = 1.5, λ = 7 dyne/cm2 and density
1 g/cm3. As before, substitution of (36) into the governing equations yields the problem
data. Table 3, right, confirms that the new algorithm recovers the linear displacement
field up to machine precision, i.e., it passes a patch test for non matching interface grids.
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Figure 3: Uniform and non uniform domain discretizations on which to recover a linear solution.

7 CONCLUSIONS

We have presented a new explicit method for elastodynamic problems with interfaces,
which enables partitioned solution of the equations. Numerical studies show that the
method passes a linear patch test and is second order accurate. If the interface grids have
matching nodes then the method recovers a solution of the monolithic discretization.
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